Hashing Based Hierarchical Feature Representation for Hyperspectral Imagery Classification
نویسندگان
چکیده
منابع مشابه
Hashing Based Hierarchical Feature Representation for Hyperspectral Imagery Classification
Integrating spectral and spatial information is proved effective in improving the accuracy of hyperspectral imagery classification. In recent studies, two kinds of approaches are widely investigated: (1) developing a multiple feature fusion (MFF) strategy; and (2) designing a powerful spectral-spatial feature extraction (FE) algorithm. In this paper, we combine the advantages of MFF and FE, and...
متن کاملA Novel Clustering-Based Feature Representation for the Classification of Hyperspectral Imagery
In this study, a new clustering-based feature extraction algorithm is proposed for the spectral-spatial classification of hyperspectral imagery. The clustering approach is able to group the high-dimensional data into a subspace by mining the salient information and suppressing the redundant information. In this way, the relationship between neighboring pixels, which was hidden in the original d...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملWhen Low Rank Representation Based Hyperspectral Imagery Classification Meets Segmented Stacked Denoising Auto-Encoder Based Spatial-Spectral Feature
When confronted with limited labelled samples, most studies adopt an unsupervised feature learning scheme and incorporate the extracted features into a traditional classifier (e.g., support vector machine, SVM) to deal with hyperspectral imagery classification. However, these methods have limitations in generalizing well in challenging cases due to the limited representative capacity of the sha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2017
ISSN: 2072-4292
DOI: 10.3390/rs9111094